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Metastable structures with modified weighted density-functional theory
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The free energy of the supercooled liquid near freezing is studied in the density-functional approach using
the modified weighted density approximation. A class of minima corresponding to heterogeneous structures
characterized by weak mass localization are detected. The stability of these structures is found to be greater
than the highly localized ‘‘hard-sphere glass’’ state in the intermediate density range above freezing.
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I. INTRODUCTION

The study of the amorphous state of a liquid, which
supercooled below its characteristic freezing point, has b
an area of much current research interest. Various theore
approaches have evolved during the last two decades to
derstand the behavior of a liquid in the supercooled or gla
state. Traditionally, the identification of these states has b
associated with the sharp change in the macroscopic dyn
cal properties such as diverging viscosity or vanishing dif
sion coefficients. The dynamical features of this state h
been studied from the analysis of the equations of nonlin
fluctuating hydrodynamics@1,2# as well as using a kinetic
theory @3–5# approach. These models have achieved a
amount of success in attaining agreement with the exp
mental observations. The other approach to the study
glassy systems was through the analysis of thermodyna
properties of the metastable states. Interestingly, lands
paradigms have been used for the study of a wide clas
complex systems in recent years@6#. Generally a glassy sys
tem has a complicated landscape with many possible s
and qualitative behaviors of such systems are explored@7#
through an analysis of the same. In the present paper
consider the equilibrium thermodynamic property, name
the free energy of the system in the supercooled state.
glassy state is also characterized by nonequilibrium pro
ties such as aging and to what extent the changes
prompted by an underlying phase transition is still a ma
of current research. However, for studying the nature
metastable states, ideas of the equilibrium statistical mec
ics are often used. In this respect, the free-energy landsc
for disordered systems such as spin glass@8,9# have been
done. In the case of supercooled liquids, the scenario for
structural glass transition was discussed by Kirkpatrick a
Wolynes @10# using such concepts. The thermodynam
property is studied in the density-functional approximatio
which involves evaluating the free energy for a particu
density profile that may be inhomogeneous like to a cry
or homogeneous like a uniform liquid. The metastable a
stable structures are studied@11–16# by identifying the exis-
tence of free-energy minima for a specific system includ
amorphous structures.

The density-functional theory has gained wide accepta

*Author to whom correspondence should be addressed.
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over the past two decades as a fruitful approach to study
freezing transitions and other physical properties of inhom
geneous classical fluids. It provides the tools to qualitativ
gain insight into the structural changes that a system un
goes when it is compressed to high densities. The basic p
ciple that governs this theory is based on the theorem es
lished by Mermin @17# according to which, once the
interparticle potential of a system is specified, there exis
one-to-one correspondence between the external pote
and the one particle density distribution functionr(rW). The
thermodynamic potentials of the system besides bein
function of other thermodynamic variables, are also fun
tional of the external potential. As a consequence of M
min’s theorem, these thermodynamic potentials can be
pressed as a functional of the local densityr(rW). Thus, this
study involves the investigation of the free-energy landsc
as a functional of the density distribution. The thermod
namic variational principle is applied to minimize the fre
energy functional, and hence, identify the stable and m
stable phases of the given system@18#. The minimization is
generally carried out in a constrained manner by supply
the underlying lattice structure as the input. For a system
classical particles, the stationary solution of the dynami
equations for the one-particle distribution function, e.g.,
Revised Enskog Equation@19#, also corresponds to the loca
minima of the same free-energy functional of density th
determines the equilibrium states@20#.

The hard-sphere model approximates well the structur
dense particle systems since short-range interparticle re
sion is the major effect in determining the structure. Fo
hard-sphere system compressed to high density, the isotr
fluid undergoes transition to a fcc~face-centered-cubic! crys-
tal corresponding to a freezing densityr f* 50.95. However,
metastable states of such a system are also observed if f
ing is avoided. Singhet al. pioneered the use of the densit
functional theory~DFT! @11# in discovering the existence o
a ‘‘hard-sphere glass’’ state as a metastable free-ene
minima pertaining to the Bennett’s amorphous structure. T
study was motivated to determine the structural aspect
glassy states from a purely thermodynamical approach.
corresponding metastable state is a highly localized den
distribution which is unlikely to associate with supercool
states at intermediate densities. More results pointing
wards the existence of similarly localized structures w
reported thereafter, by using the nonperturbative forms of
free-energy functional@12,14#. In a recent paper reported b
the present authors@16#, a free-energy minima characterist
of a structure with a weakly localized, heterogeneous den

profile was found apart from the usual ‘‘hard-sphere glass’’

©2002 The American Physical Society23-1
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CHARANBIR KAUR AND SHANKAR P. DAS PHYSICAL REVIEW E65 026123
found in the earlier works. This study was done using
Ramakrishnan-Yussouff~RY! form of the free-energy func
tional @21#. Here, a key approximation used in earlier wor
in evaluating the entropic part of the free energy w
avoided. The amount of localization specific to this state w
found to be conforming with the observed comput
simulation results. However, this method involved expre
ing the excess part of the free energy as a perturbation
pansion around the liquid state of the same average de
and since this expansion is generally truncated at the se
order, the qualitative correctness of its results are ambigu
for the highly localizedstructures in which the deviation o
the one-particle densityr(rW) from the average solid densit
r is very large. In order to avoid such approximations, va
ous nonperturbative methods have evolved beginning w
the weighted density-functional theory of Tarazona@22#.
Subsequently, this was studied by Curtin and Ashcroft@23#
and Denton and Ashcroft@24# who devised the modified
weighted density approximation~MWDA !. This approach
involves the global mapping of the inhomogeneous sys
specified byr(rW), into a homogeneous fluid system of de
sity r̂ that has the similar strength of correlations as tha
the inhomogeneous system. In the present paper, we
explored the metastable character of the weakly locali
amorphous structures relative to the ‘‘hard-sphere gla
state by employing the MWDA technique. In this paper,
illustrate the presence of both the free-energy minima
evaluated by theexact calculation of the two competing
terms of the free-energy functional. The results display
quantitative change in the free-energy values as calcul
using the RY functional@16#, and hence, affect their relativ
metastable character. We observe that the amorphous
prefers the weakly localized density structure for lower a
intermediate densities. In the higher-density ranges,
highly localized structure becomes more stable. These
tures are observed by considering different distributions
the amorphous lattice points@12,14#.

The paper is organized as follows: In Sec. II, we disc
the computational details of the free-energy model con
ered. We briefly review the MWDA technique and illustra
the evaluation of the ideal-gas part and the excess part o
free energy for the random structure. The following secti
Sec. III, contains the explicit results observed using th
techniques, and in Sec. IV, the implications of these res
are discussed.

II. MODEL FOR THE FREE-ENERGY FUNCTIONAL

The formulation of all density-functional theories begi
with the definition of the ensemble averaged, one-part
density distributionr(rW) for the inhomogeneous structur
One very successful prescription for this was first put f
ward by Tarazona@22# who expressed ther(rW) as a summa-
tion over the lattice sites of normalized isotropic Gauss
distribution functions. The formal expression being

r~rW !5(
i

f~ urW2RW i u!, ~1!
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where the amorphous lattice sites are denoted by$RW i% and
the function f is taken as the isotropic Gaussianf(r )
5(a/p)3/2e2ar 2

. The parametera is inversely proportional
to the square of the width of each Gaussian peak and thu
low value depicts a loosely bound particle to the lattice s
In fact, thea→0 limit represents the liquid or the homoge
neous state and larger values depict a highly localized s
structure. The minimization of the free-energy functional
effectively conducted with respect toa at a given densityr
and the value ofa corresponding to the minimum free en
ergy points towards the phase of the system in equilibriu
The correctness of this simple Gaussian approximation
been tested by various authors who have used its more c
plicated, basically anisotropic forms and have found
freezing results to be rather insensitive to this variat
@25,26#. The root-mean-square displacement associated
any particle in the system can be estimated by thea value
corresponding to the minimum free energy. In many freez
studies, this has formed the basis for prediction of
Lindemann ratio characteristic of the crystal structure.

The Helmholtz free-energy functional is evaluated us
this density distribution function Eq.~1!. In general, the free
energy can be written as a sum of the ideal-gas contribu
F id@r(rW)#, and the excess partFex@r(rW)#, asF@r#5F id@r#
1Fex@r#. Here,F id is the entropic contribution, due solely t
the packing of the system, whereas the excess part quan
the interaction part of the free energy. The free-ene
minima are determined by the competition between th
two terms. The ideal-gas part of the free-energy functiona
an inhomogeneous system is given as~in units of b21!

F id@r~rW !#5E drW r~rW !$ ln@∧3r~rW !#21%, ~2!

∧ being the thermal wavelength. For considering the mi
mization in larger ranges of the width parametera corre-
sponding to very localized density distributions, the entro
part per particlef id , is generally approximated by the ex
pression

f id@r#'F2
5

2
1 ln∧3S a

p D 3/2G . ~3!

Equation~3! is obtained from the general expression~2! by
approximating the summation over all lattice sites inr(rW) by
counting the contribution from just the nearest site. This
valid for large a ~greater than'40!, since for such large
values the Gaussian profile is so narrow that there is no o
lapping between those centered around different sites.
earlier studies conducted in this respect@11,12,14#, used this
form of f id to calculate the ideal-gas part of the free ener
To investigate the existence of metastable states chara
ized by loosely bound particles that are actually seen in
computer simulation studies, the free-energy landscape n
to be explored in the lower ranges ofa and thus we evalu-
ated this term exactly as
3-2



tic

th

s

e
sy
a
at
al
er
t o

o

ou

y
ou
x-
f t

he
ty
u
e
e

in

is
q-

rate
k

ex-
s
he
ed

e

ate
ral

olid

METASTABLE STRUCTURES WITH MODIFIED . . . PHYSICAL REVIEW E65 026123
f id@r~rW !#5E drW f~rW !F lnS ∧3E dRW f~rW2RW !@d~RW !

1rg~RW !# D21G , ~4!

whereg(RW ) is the site-site correlation function characteris
of the random structure used. In the earlier work@16#, it was
shown that this expression starts matching with
asymptotic result fora.20 within a 5% error. This formu-
lation takes proper account of the wide, overlapping Gau
ian distribution functions specific to systems with lowera
values.

Following the Ramakrishnan-Yussouff formulation of th
interaction part of the free energy of the inhomogeneous
tem, various new methodologies have evolved in the p
decade. Although all density-functional theories approxim
the solid as a strongly inhomogeneous fluid, they gener
differ in formulating this approximation. In the present pap
we have used the MWDA to evaluate the interaction par
the free energy. This theory involves the global mapping
the inhomogeneous system specified byr(rW), into an effec-
tive or equivalent homogeneous fluid of densityr̂ that has
the similar level of correlations as that of the inhomogene
system. The densityr̂ of this liquid is called the weighted
density of the solid and can be obtained as

r̂5
1

N E drW1r~rW1!E drW2r~rW2!w~rW12rW2 ; r̂ !, ~5!

where w(r ) is a normalized weight function obtained b
equating the direct correlation function of the homogene
systemc(r ; r̂) to the second functional derivative of the e
cess free energy of the solid. The excess free energy o
solid is approximated as

Fex@r#5N fex~ r̂ !, ~6!

where f ex( r̂) is the excess free energy per particle of t
homogeneous state corresponding to the weighted densi
the inhomogeneous system. A self-consistent integral eq
tion for the weighted density is obtained by following th
above prescription@24#. For the random structure, this can b
reformulated as

2 f ex8 ~ r̂ !r̂52rr̂ f ex9 ~ r̂ !2E drW1E drW2E dRW c~ urW1

2rW2u; r̂ !f~rW12RW !f~rW2!@d~RW !1rg~RW !#.

~7!

This expression can be further reduced to the follow
form:

2 f ex8 ~ r̂ !r̂52rr̂ f ex9 ~ r̂ !1aA2a

p
I 1~a!

14rApa

2 E
0

`

dR R g~R! I 2~a; R!, ~8!
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whereI 1 and I 2 are the integrals defined as

I 1~a!5E
0

`

dt t2c~ t !e2~at2/2! ~9!

and

I 2~a; R!5E
0

`

dt t c~ t !@e2@a~ t2R!2#/22e2@a~ t1R!2#/2#.

~10!

Here, the derivative with respect to density is denoted asf ex8
i.e., f ex8 5] f ex/]r . Equation~8! is solved iteratively to obtain
the r̂ at a given average densityr and width parametera.

III. RESULTS

The self-consistent equation for the densityr̂ of the ho-
mogeneous liquid to which the inhomogeneous state
mapped involves the direct correlation function for the li
uid. Thus, the homogeneous state free energyf ex(r), and
hence, the direct correlation function of the liquid statec(r )
form a significant building block of this theory. In Ref.@16#,
as well as the present paper, we have used a fairly accu
form of c(r ) given by the solution of the Percus-Yevic
equation with the Verlet-Weis correction added@27,28#. The
homogeneous state excess free energyf ex(r) should also be
self-consistent with the form of thec(r ) used. Thus, the
Carnahan-Starling formula is used in computing both the
cess free energy@29# of the homogeneous liquid, as well a
the direct correlation function. In Fig. 1, we have shown t
c(r * ) at densityr* 51.02 as the solid line, and the dash
line shows thec(r * ) at r* 50.8 for comparison with the
result of Henderson and Grundke@28#. We use the hard-
sphere diameters as the unit of length in this paper and th

FIG. 1. Direct correlation function of the homogeneous st
c(r ) evaluated as the analytic solution of the Percus-Yevick integ
equation for hard spheres with Verlet-Weis correction added. S
line is c(r * ) at r* 50.8 and dashed line is atr* 51.02. The dis-
tancer is expressed in units ofs(r * 5r /s) and the density in units
of s23 (r* 5rs3).
3-3
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CHARANBIR KAUR AND SHANKAR P. DAS PHYSICAL REVIEW E65 026123
quantitiesr * and r* correspond to dimensionless numbe
r /s andrs3, respectively. The tail ofc(r ) is significant to
take into account with increasing density since the corre
tions become longer ranged with increasingr and the
Percus-Yevickc(r ) ignores this tail part. To study the role o
c(r ), we have also tested these theories by using diffe
approximations forc(r ). The existence of the weakly loca
ized minima is observed with anyc(r ) and a self-consisten
form of f ex(r). However, its relative metastable character
quite sensitive to the accuracy of the liquid state informat
supplied in the specific density range. For higher range
the width parametera, the average density of the corre
sponding highly localized solid is much higher than the d
sity r̂ of the equivalent liquid with a similar level of corre
lation. Thus, the inhomogeneous solid is mapped to a liq
of much lower density where the Percus-Yevick model
c(r ) gives an accurate description of the correlation. In
region of our interest, i.e., smalla, due to the weakly local-
ized Gaussian profiles, the average density of the inhomo
neous system comes close to that of the mapped liquid. A
result of this, a more accurate description of the direct c
relation function and the free energy is required at su
higher densities to obtain more reliable results.

Another important input in these calculations is the und
lying lattice structure around which the Gaussian profiles
centered. The structural description of the underlying am
phous lattice is provided through the site-site correlat
function g(RW ) of the Bernal’s random structure@30# that is
generated through the Bennett’s algorithm@31#. Following
Baus and Colot@12#, we use the scaling relation forg(R) to
parametrize a given structure in the following form:

g~R,h!5gBFRS h

ho
D 1/3G , ~11!

whereh denotes the average packing fraction. Here,ho is
used as a scaling parameter for the structure@12,14#, such
that ath5ho , the structure corresponds to Bernal packin
Increasing values ofho denote an increasingly separated
loose underlying lattice structure. For evaluating the free
ergy in the relatively smaller ranges of the width parame
theR integration, i.e., summation over lattice sites, cannot
truncated at the first coordination shell, as has been don
previous calculations. Here, the Gaussians at different la
sites are overlapping, and thus convergence of the integra
obtained at very highR values. Thus,g(R) is formulated in
an analytical form by fitting the data available from Be
nett’s paper@31# and then extrapolating it to higherR values.

Using the MWDA formulation of free energy, we hav
studied the thermodynamic properties of the heterogene
amorphous structures. A type of metastable state is dete
apart from the usual ‘‘hard-sphere glass’’ as a separate
tinct minimum on the free-energy landscape. The density
tribution is given by overlapping Gaussian profiles cente
on a random lattice with the width parametera in the lower
ranges in comparison to the corresponding values for
hard-sphere glass. This is illustrated in Fig. 2, where both
minima observed for the Bernal’s random structure
shown. This figure corresponds to the amorphous structu
02612
-

nt

n
of

-

id
r
e

e-
a

r-
h

r-
e
r-
n

.
r
-

r,
e
in
e
is

us
ted
is-
s-
d

e
e
e
at

density r* 51.02 andho50.70. The lower free energy i
attributed to the structure with density distribution charact
ized by a* 513, which represents a much more loose
bound structure than that corresponding to the higher fr
energy minima ata* 572. We find that the weakly localized
minimum only exists when the underlying lattice structure
random and is absent for the crystalline structure with lo
range order. Only the highly localized minimum is observ
in the case of fcc structure. In Fig. 3, this feature is depic
where the free energy per particlef versus densityr* is
shown atho50.70, for both types of structures. The sol
line corresponds to the weakly localized state and the das
line represents the ‘‘hard-sphere glass’’ state. The free en
of the heterogeneous state is lower than that of the ‘‘ha
sphere glass’’ up tor* '1.03 and for densities greater tha
that this trend reverses. Here, we would like to indicate t
both the inhomogeneous structures for high and lowa are

FIG. 2. Free energy per particlef ~in units of b21! vs width
parametera* (a* 5as2) at r* 51.02,ho50.70.

FIG. 3. Free energy per particle~f ! ~in units ofb21! vs average
densityr* at ho50.70. The solid curve corresponds to the weak
localized state and the ‘‘hard-sphere glass’’ state is shown as
dashed line. The squares denotef fcc .
3-4
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METASTABLE STRUCTURES WITH MODIFIED . . . PHYSICAL REVIEW E65 026123
more stable than the uniform liquid state. The free energy
particle of the fcc structure calculated using the Verlet-W
c(r ) is also shown by the square symbols. It should be no
that with the present choice of the structure factor, the d
sity at which the fcc structure becomes more stable than
liquid occurs at r50.946 corresponding to the freezin
density.

In general, for the face-centered cubic crystal,
weighted densityr̂ is found to be lower than the correspon
ing average density of the crystalr. r̂ monotonically de-
creases with the increase ofr and it is only in the very
high-density regions~h.0.63 @32#!, that a reversal of this
trend has been observed. On the other hand, in the case o
class of minima for lowa as in the present paper,r̂ is even
higher than the average densityr of the inhomogeneous
structure. This is seen for underlying amorphous latt
structures corresponding to values of the parameterho
~<0.66!. For the structures corresponding to higherho val-
ues, this trend does not exist and we have based the i
ences of this paper from such structures only. In Fig. 4,
have shown this fact by illustrating the variation ofr̂ with r
for ho50.66 ~dashed line! andho50.70 ~solid line!.

Another feature observed in this calculation is that
free-energy minima corresponding to highly localized de
sity profiles termed as the hard-sphere glass, disappea
certain densities. This is shown in Fig. 5 atr* 50.98 atho
50.70. Here, for the whole range of the density consider
the lowera minima is distinctly present but the correspon
ing one in the highera ranges gets smeared off at low
densities. We observe that there is a crossover value o
average densityr, denoted asrc* below which only the mini-
mum in the lower range ofa is observed. This aspect is no
observed@14# when the Percus-Yevick result for the dire
correlation functionc(r ) is used. The more accurate descr
tion of the correlations developing at high density being
cluded in the present calculation is likely to be the reason
this observation. Furthermore, with the increasing value
the parameterho , this value of rc* keeps increasing a
shown in Fig. 6.

FIG. 4. Variation of weighted densityr̂ with the average density
r* . The solid line represents the heterogeneous structure aho

50.70 and the dashed line is forho50.66.
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The width parametera is a measure of the strength wit
which the particles are pinned to their respective sites in th
equilibrium ~or quasiequilibrium! state. It is inversely pro-
portional to the root-mean-square displacement of the p
ticles from their sites. This also defines the Lindemann ra
As was already indicated in Ref.@16#, LaViolette and Still-
inger @33# have observed that the root-mean-square displa
ment of the particles in the supercooled states is appr
mately three times more than that found in the crys
structure at freezing. We observed in Ref.@16# the same
value for this ratio corresponding to the weakly localiz
state using the RY functional technique. In the present pa
with an entirely different formulation, a similar relation i
found to be true again. This is shown in Fig. 7, where we p
the parameterd defined asd51/Aa, for both the heteroge-
neous ~solid line! and the hard-sphere glass minimu
~dashed line! with respect to densityr* . This is shown here
with ho50.70 for the amorphous structure. The correspo
ing values for the fcc hard-sphere crystal are shown

FIG. 5. Free energy per particlef ~in units of b21! vs width
parametera* at r* 50.98,ho50.70. Only the heterogeneous min
mum is present in the free-energy landscape.

FIG. 6. Variation of therc* ~see text! with respect toho .
3-5
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squares. The hard-sphere glass structure shows a localiz
close to that of a crystal. These features are observed un
sally at anyho value.

Apart from the strength of localization, the thermod
namic features of this weakly localized state can also
computed from this study. The pressure of the hard-sph
liquid is obtained from the expression

bP5r
] f

]r
2 f . ~12!

For the weakly localized state, the pressure computed in
way is, in general, higher than that corresponding to
‘‘hard-sphere glass’’ state. In Fig. 8, we have shown the pr

FIG. 7. The root-mean-square displacementd ~in units of s! vs
densityr* . The solid curve illustrates results for the heterogene
state and the dashed curve represents the ‘‘hard-sphere glass’
~both at ho50.70!. The squares represent the corresponding
values.

FIG. 8. PressureP @in units of (bs3)21# vs densityr* for the
weakly localized state is shown as circles. The corresponding
sults for the fcc structure are shown with filled squares while
same for the homogeneous liquid state is shown with the solid l
02612
ion
er-

e
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sureP, evaluated for the lowa minima ~shown as circles!.
The derivatives, with respect to the density involved in th
computation, were obtained numerically from results for t
free energy calculated within the MWDA approximatio
The numerical result is sensitive to the form of the dire
correlation function used. Thus, if the tail part inc(r ), sig-
nifying longer-range correlation in the fluid, is ignored—
results in a more steep increase of the corresponding pres
with density. In the same figure we also show the cor
sponding curve for the homogeneous liquid~solid line! and
the fcc state~squares!.

IV. DISCUSSION

We have presented here the detailed description of a
culation, which identifies a heterogeneous metastable sta
a minimum in the free-energy landscape of a given rand
structure. This state was identified in our earlier work@16#
using the RY functional formulation of the density-function
theory. It was shown there that this state could be identifi
with the metastable supercooled liquid states. The aver
particle displacement in the weakly localized states c
formed with the computer simulation predictions of LaVi
lette and Stillinger@33#. The present paper is based on
nonperturbative approximation of the interactive part of fre
energy functional. The significance of this paper lies
strengthening the earlier finding by arriving at similar qua
tative results related to the identification of the weakly loc
ized state. This study could also be used here to comp
other thermodynamical properties such as pressure in
state @34#. The observation that the root-mean-square d
placement is similar to what is seen in computer simulatio
demonstrates that the class of minima are useful in desc
ing the metastable state in the first stage of supercool
Here, ho is being used as a parameter so as to gene
different random structures through the scaling of the B
nal’s random structure. The increasing values ofho at the
sameh, refer to a more dispersed random structure, as
apparent from Eq.~11!. Whenho is equal to 0.64 the result
ing structure is identical to the Bernel close-packed structu

For the crystal, the free-energy minima lie in the largea
range. The RY formulation is expressed as a truncation at
second order of the perturbation expansion in density.
density distribution corresponding to largea values, in gen-
eral the deviationdr(rW)5r(rW)2r is very large and thus
truncating the expansion at the second order is an over
proximation. On the other hand, the MWDA formulation a
proximates the properties of the inhomogeneous structur
that of anequivalentliquid. Since the free-energy minima fo
ordered structures lie in the larger ranges ofa, the corre-
sponding density of theequivalentliquid is much less than
that of the inhomogeneous structure. Thus, the fairly w
known liquid state description in the lower and intermedia
density regions, like the Percus-Yevick approximation co
be used reliably. Hence, for hard-sphere systems, this th
has been considerably successful in determining the free
parameters of the liquid-crystal transition. This has been
particular advantage of the MWDA approach in studying t
stability of highly localized structures. On the other han
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due to the overlapping density profiles in the lowa region,
the correspondingr̂ is close to that of the average densityr.

This paper highlights the existence of heterogene
structures that are more stable than the highly locali
amorphous structures in the relatively lower and intermed
densities for the supercooled liquid for supercooled dens
closer to the freezing point. A subsequent step to underst
ing the nature of the metastability would require a prop
study of the dynamics associated with the system aro
er

.

02612
s
d
te
s
d-
r
d

these metastable states and obtain an estimation of the r
ation to these states.
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