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Metastable structures with modified weighted density-functional theory
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The free energy of the supercooled liquid near freezing is studied in the density-functional approach using
the modified weighted density approximation. A class of minima corresponding to heterogeneous structures
characterized by weak mass localization are detected. The stability of these structures is found to be greater
than the highly localized “hard-sphere glass” state in the intermediate density range above freezing.

DOI: 10.1103/PhysReVvE.65.026123 PACS nunier64.60—i, 64.70.Pf, 71.15.Mb

[. INTRODUCTION over the past two decades as a fruitful approach to study the

freezing transitions and other physical properties of inhomo-

The study of the amorphous state of a liquid, which isgeneous classical fluids. It provides the tools to qualitatively
supercooled below its characteristic freezing point, has bee®@in insight into the structural changes that a system under-
an area of much current research interest. Various theoreticdP€S When it is compressed to high densities. The basic prin-
approaches have evolved during the last two decades to u iple that governs this theory is based on the theorem estab-
derstand the behavior of a liquid in the supercooled or glass Istgfdarg)clleMiire?l;rt]ia[llg aagcgtrgms tso e\g/iggg, thoenr((:aee;igfs a
state. Traditionally, the identification of these states has bee ne-?o—one c[:)orres ondencg betweenpthe external potential
associated with the sharp change in the macroscopic dynamé— P P

. : . . . e . nd the one particle density distribution functip(’). The
cal properties such as diverging viscosity or vanishing d'ﬁu'thermodynamic potentials of the system besides being a

sion coeffi_cients. The dynamical features of this state ha"ﬂmction of other thermodynamic variables, are also func-
been studied from the analysis of the equations of nonlineafsna| of the external potential. As a consequence of Mer-
fluctuating hydrodynamic$1,2] as well as using a kinetic min's theorem, these thermodynamic potentials can be ex-
theory [3-5] approach. These models have achieved a faipressed as a functional of the local density). Thus, this
amount of success in attaining agreement with the experistudy involves the investigation of the free-energy landscape
mental observations. The other approach to the study ods a functional of the density distribution. The thermody-
glassy systems was through the analysis of thermodynamigamic variational principle is applied to minimize the free-
properties of the metastable states. Interestingly, landscamergy functional, and hence, identify the stable and meta-
paradigms have been used for the study of a wide class aftable phases of the given syst€h8]. The minimization is
complex systems in recent yedfd. Generally a glassy sys- generally carried out in a constrained manner by supplying
tem has a complicated landscape with many possible statélse underlying lattice structure as the input. For a system of
and qualitative behaviors of such systems are explpréd classical particles, the stationary solution of the dynamical
through an analysis of the same. In the present paper V\@qugtions for the one-particle distribution function, e.g., the
consider the equilibrium thermodynamic property, namely,Revised Enskog Equatidri9], also corresponds to the local
the free energy of the system in the supercooled state. THBINIma of the same free-energy functional of density that

glassy state is also characterized by nonequilibrium propedetérmines the equilibrium statg20].
ties such as aging and to what extent the changes ar The hard-sphere model approximates well the structure of

prompted by an underlying phase transition is still a matte ense particle systems since short-range interparticle repul-

of current research. However, for studying the nature o Iz;)rr:j-ls Lh;en;alsotrerenﬁgg:n'nrgsest:ml)nmgr;[r(‘jee r?éE?Ct%r:.iszct)rroaic
metastable states, ideas of the equilibrium statistical mechan-". P y “omp 9 y, U P

. . uid undergoes transition to a f¢tace-centered-cubjcrys-

ics are often used. In this respect, the free-energy IandscapF

: . Al corresponding to a freezing densjij =0.95. However,
for disordered systems such as spin glg&s] have been metastable states of such a system are also observed if freez-

done. In the case of S.'L.JperCOOqu liquids, the scenario for thl‘ghg is avoided. Singlet al. pioneered the use of the density-
structural glass transition was discussed by Kirkpatrick anqunctional theory(DFT) [11] in discovering the existence of
Wolynes [10] using such concepts. The thermodynamicy snard sphere glass’ state as a metastable free-energy
property is studied in the density-functional approximation,minima pertaining to the Bennett's amorphous structure. This
which invol\_/es evaluating t_he free energy fC_Jf a paftiCU|afstudy was motivated to determine the structural aspects of
density profile that may be inhomogeneous like to a crystal|assy states from a purely thermodynamical approach. The
or homogeneous like a uniform liquid. The metastable angorresponding metastable state is a highly localized density
stable structures are studigtll—16 by identifying the exis-  distribution which is unlikely to associate with supercooled
tence of free-energy minima for a specific system includingstates at intermediate densities. More results pointing to-
amorphous structures. wards the existence of similarly localized structures were
The density-functional theory has gained wide acceptanceeported thereafter, by using the nonperturbative forms of the
free-energy functiondl12,14. In a recent paper reported by
the present authofd.6], a free-energy minima characteristic
* Author to whom correspondence should be addressed. of a structure with a weakly localized, heterogeneous density
profile was found apart from the usual “hard-sphere glass”
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found in the earlier works. This study was done using theyhere the amorphous lattice sites are denoted Ry and
Ramakrishnan-YussoutRY) form of the free-energy func- the function ¢ is taken as the isotropic Gaussiah(r)
tional [21]. Here, a key approximation used in earlier WOTKS:(a/ﬂ_)yze_mzl The parameter is inversely proportional

n e.a/aldua_‘lfwg the etntrfolp|c Ipart'g of the'f.fr(?[e tﬁ'ner?yt WaSs the square of the width of each Gaussian peak and thus its
?vmde t. be amo%n otloca '%{ﬁ 'Otﬂ spegl Ic Od IS sta etvva%w value depicts a loosely bound patrticle to the lattice site.
ound fo be conforming Wi € ODserved COMPUIer, fact, thea—0 limit represents the liquid or the homoge-

simulation results. However, this method involved express. . s state and larger values depict a highly localized solid

ing the excess part of the free energy as a perturbation e tructure. The minimization of the free-energy functional is
ectively conducted with respect o at a given density
d the value okx corresponding to the minimum free en-

gy points towards the phase of the system in equilibrium.

pansion around the liquid state of the same average densi
and since this expansion is generally truncated at the secor)
order, the qualitative correctness of its results are ambiguo

for the highly localizedstructures in which the deviation of The correctness of this simple Gaussian approximation has

thg one-particle density(F) frorp the average .Sond. denS|ty' been tested by various authors who have used its more com-
pis very large. In order to avoid such approximations, vari- licated, basically anisotropic forms and have found the

ous nonperturbatlvg methopls have evolved beginning wit reezing results to be rather insensitive to this variation
the weighted dgnsﬁy-functpnal theory_ of Tarazofge]. [25,26. The root-mean-square displacement associated with
Subsequently, this was studied by Curtlln and Ashd@ﬁj any particle in the system can be estimated by d¢healue

anq Denton and Ashcroi'[t24].who devised Fhe modified corresponding to the minimum free energy. In many freezing
welghted density approm_manﬂ\/lWI_DA). This approach studies, this has formed the basis for prediction of the
mvoly_es the globgl mapping of the mhomogeneous SYSt®Mjndemann ratio characteristic of the crystal structure.
specified byp(F), into @ homogeneous fluid system of den- The Helmholtz free-energy functional is evaluated using

sity p that has the similar strength of correlations as that Ofthis density distribution function Eq1). In general, the free

the linhc()jrrl[ﬁgene(iust sglsterrr]]. In Ehe pfr?ﬁent palfler’l wel_ha ?lergy can be written as a sum of the ideal-gas contribution
explore e metastable character of the weakly localize (N1, and the excess paR.{p(F)], asF[p]=F[p]

amorphous structures relative to the “hard-sphere glass

. . : + . JFigl i ibution,
state by employing the MWDA technique. In this paper, we Feod p]. Here,F 4 is the entropic contribution, due solely to

. e the packing of the system, whereas the excess part quantifies
llustrate the presence of bOth the free-energy MINIMA a6 - interaction part of the free energy. The free-energy
evaluated by theexact calculation of the two competing minima are determined by the competition between these

e e e eyl 15 Ao trms Th dealgas par o e f-snrgy ol
- . . . . - 71
using the RY functiona]16], and hence, affect their relative Inhomogeneous system is given(@sunits of 57

metastable character. We observe that the amorphous state

prefers the weakly localized density structure for lower and . o 3

intermediate densities. In the higher-density ranges, the Fid[p(r)]:Jdrp(r){ln[D p(N]—1}, 2
highly localized structure becomes more stable. These fea-

tures are observed by considering different distributions for ) o o
the amorphous lattice poinf42,14. 0 being the thermal wavelength. For considering the mini-

The paper is organized as follows: In Sec. I, we discusgnization in larger ranges of the width parametercorre-
the computational details of the free-energy model considsPonding to very localized density distributions, the entropic
ered. We briefly review the MWDA technique and illustrate Part per particlefiy, is generally approximated by the ex-
the evaluation of the ideal-gas part and the excess part of tH€SsIon
free energy for the random structure. The following section,

Sec. Ill, contains the explicit results observed using these 5 32
techniques, and in Sec. IV, the implications of these results fid[p]~[—§+|n[|3(—) } ©)
are discussed. ™

Equation(3) is obtained from the general expressi@ by
approximating the summation over all lattice sitep(m) by
The formulation of all density-functional theories begins counting the contribution from just the nearest site. This is
with the definition of the ensemble averaged, one-particlevalid for large o (greater than~40), since for such large
density distributionp(F) for the inhomogeneous structure. values the Gaussian profile is so narrow that there is no over-
One very successful prescription for this was first put for-lapping between those centered around different sites. The
ward by Tarazon$22] who expressed the(f) as a summa- earlier studies conducted in this respgit,12,14, used this
tion over the lattice sites of normalized isotropic Gaussiarform of f; to calculate the ideal-gas part of the free energy.
distribution functions. The formal expression being To investigate the existence of metastable states character-
ized by loosely bound particles that are actually seen in the
computer simulation studies, the free-energy landscape needs
p(N =2 $(IF-Ri)), (1) to be explored in the lower ranges afand thus we evalu-
i ated this term exactly as

II. MODEL FOR THE FREE-ENERGY FUNCTIONAL
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20

fulp(r)1= [ or (n In(DSf dR (7~ R)[S(R)

+pg<fe>])—1] 4)

20

Whereg(ﬁ) is the site-site correlation function characteristic
of the random structure used. In the earlier wtg], it was
shown that this expression starts matching with the
asymptotic result for>20 within a 5% error. This formu- 80
lation takes proper account of the wide, overlapping Gauss:

ian distribution functions specific to systems with lower

values.

Following the Ramakrishnan-Yussouff formulation of the
interaction part of the free energy of the inhomogeneous sys -100
tem, various new methodologies have evolved in the pas
decade. Although all density-functional theories approximate
the solid as a strongly inhomogeneous fluid, they generally FIG. 1. Direct correlation function of the homogeneous state
differ in formulating this approximation. In the present paperyc(l’) evaluated as the analytic solution of the Percus-Yevick integral
we have used the MWDA to evaluate the interaction part ofquation for hard spheres with Verlet-Weis correction added. Solid
the free energy. This theory involves the global mapping ofine is ¢(r*) atp*=0.8 and dashed line is @f" =1.02. The dis-
the inhomogeneous system specifieddy), into an effec- tanc?r3 is expresssed in units af(r* =r/o) and the density in units
tive or equivalent homogeneous fluid of densitythat has of 0% (p* =p0).
the similar level of correlations as that of the inhomogeneous ) ,
system. The density of this liquid is called the weighted Wherel. andl, are the integrals defined as
density of the solid and can be obtained as

c(r)

. (@)= f dt c(t)e (@ ©)
~ N ~ o N N oA 0
p=ﬁf drlp(rl)f diap(M)W(M =25 p), (5
and
where w(r) is a normalized weight function obtained by
equating the direct correlation function of the homogeneous B — f” [a(t—-R2)2_ A [a(t+R)2]2
systemc(r;p) to the second functional derivative of the ex- (@ R) 0 dtte(tle € 1
cess free energy of the solid. The excess free energy of the (10
solid is approximated as
A Here, the derivative with respect to density is denotefl,as
Felp]=N fedp), 6 e, fl=dfe/d,. Equation(8)is solved iteratively to obtain

where fo,(p) is the excess free energy per particle of thethep ata given average densityand width parametes:.

homogeneous state corresponding to the weighted density of
the inhomogeneous system. A self-consistent integral equa- IIl. RESULTS

tion for the vyei'ghted density is obtained by folloyving the  The self-consistent equation for the densityof the ho-
above prescriptiofi24]. For the random structure, this can be mogeneous liquid to which the inhomogeneous state is

reformulated as mapped involves the direct correlation function for the lig-
uid. Thus, the homogeneous state free endigfp), and
2f.(p)p= _p;)fgk(/;)_f drlf dfzf dﬁc(|r*l hence, the direct correlation function of the liquid stefe)

form a significant building block of this theory. In R¢f.6],

as well as the present paper, we have used a fairly accurate

form of c(r) given by the solution of the Percus-Yevick
(7)  equation with the Verlet-Weis correction addet¥,2§. The
) ] . homogeneous state excess free endggp) should also be
This expression can be further reduced to the followinggef.consistent with the form of the(r) used. Thus, the

—Fal; p)A(F1—R)G(F)[S(R)+pg(R)].

form: Carnahan-Starling formula is used in computing both the ex-
5 cess free energh29] of the homogeneous liquid, as well as
a . . . .
2F (3)p=— 0ot (D) +a | —I the direct correlation function. In Fig. 1, we have shown the
A P)P pplelp)t a ™ i) c(r*) at densityp* =1.02 as the solid line, and the dashed

line shows thec(r*) at p*=0.8 for comparison with the

+4pn /Efde RAR)I,(a; R), (g result of Henderson and Grundk@s]. We use the hard-
2 Jo sphere diametes as the unit of length in this paper and the
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guantitiesr* and p* correspond to dimensionless numbers T | ' LI L B L R
r/o andpo®, respectively. The tail o&(r) is significant to
take into account with increasing density since the correla-
tions become longer ranged with increasipgand the 452 [~
Percus-Yeviclc(r) ignores this tail part. To study the role of
c(r), we have also tested these theories by using differen
approximations forc(r). The existence of the weakly local- - -
ized minima is observed with arg(r) and a self-consistent ™~
form of fo(p). However, its relative metastable character is
quite sensitive to the accuracy of the liquid state information 445 [ _
supplied in the specific density range. For higher ranges of
the width parametew, the average density of the corre- B 7
sponding highly localized solid is much higher than the den-
sity p of the equivalent liquid with a similar level of corre-
lation. Thus, the inhomogeneous solid is mapped to a liquid L ' TR S
of much lower density where the Percus-Yevick model for 10 20 . 50 100
c(r) gives an accurate description of the correlation. In the «

region of our interest, i.e., smadl, due to the weakly local- FIG. 2. Free energy per particfe(in units of 871) vs width

9(R,7)=0s . (11)

4.75

4.45

ized Gaussian profiles, the average density of the inhomogearameten* (o* =ao?) at p* =1.02, 7,=0.70.
neous system comes close to that of the mapped liquid. As a
result of this, a more accurate description of the direct cordensity p* =1.02 and7,=0.70. The lower free energy is
relation function and the free energy is required at suchattributed to the structure with density distribution character-
higher densities to obtain more reliable results. ized by a* =13, which represents a much more |oose|y
Another important input in these calculations is the Under-bound structure than that Corresponding to the h|gher free-
lying lattice structure around which the Gaussian profiles argnergy minima at* =72. We find that the weakly localized
centered. The structural description of the underlying amorminimum only exists when the underlying lattice structure is
phous lattice is provided through the site-site correlatiorrandom and is absent for the crystalline structure with long-
function g(R) of the Bernal’'s random structuf&0] that is  range order. Only the highly localized minimum is observed
generated through the Bennett’s algoritfil]. Following in the case of fcc structure. In Fig. 3, this feature is depicted
Baus and Colof12], we use the scaling relation fg(R) to ~ where the free energy per particleversus densityp* is
parametrize a given structure in the following form: shown atz,=0.70, for both types of structures. The solid
line corresponds to the weakly localized state and the dashed
1/3 . « ”
R(l) line represents the hard—sph'ere glass” state. The free energy
Mo of the heterogeneous state is lower than that of the “hard-
sphere glass” up t@* ~1.03 and for densities greater than
where 7 denotes the average packing fraction. Heyg,is  that this trend reverses. Here, we would like to indicate that
used as a scaling parameter for the strucfd®14, such  both the inhomogeneous structures for high and loware
that at = 7., the structure corresponds to Bernal packing.
Increasing values ofy, denote an increasingly separated or 4.90
loose underlying lattice structure. For evaluating the free en-
ergy in the relatively smaller ranges of the width parameter,
theR integration, i.e., summation over lattice sites, cannot be
truncated at the first coordination shell, as has been done ii
previous calculations. Here, the Gaussians at different lattice
sites are overlapping, and thus convergence of the integrals i
obtained at very higlR values. Thusg(R) is formulated in  ~ 460
an analytical form by fitting the data available from Ben-
nett's papef31] and then extrapolating it to high&values.
Using the MWDA formulation of free energy, we have
studied the thermodynamic properties of the heterogeneou
amorphous structures. A type of metastable state is detecte
apart from the usual “hard-sphere glass” as a separate dis ‘
tinct minimum on the free-energy landscape. The density dis- 430 ' ' ' '
tribution is given by overlapping Gaussian profiles centered 19! 102 tes 104 1.05 1.06
on a random lattice with the width parametein the lower P
ranges in comparison to the corresponding values for the F|G. 3. Free energy per partici€) (in units of 3~ 1) vs average
hard-sphere glass. This is illustrated in Fig. 2, where both th@ensityp* at 7,=0.70. The solid curve corresponds to the weakly
minima observed for the Bernal's random structure ardocalized state and the “hard-sphere glass” state is shown as the
shown. This figure corresponds to the amorphous structure dashed line. The squares denbjg.
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FIG. 4. Variation of weighted densify with the average density FIG. 5. Free energy per particke(in units of 871 vs width

p*. The solid line reprgsepts the heterogeneous structurg, at parameter* atp* =0.98, 7,=0.70. Only the heterogeneous mini-
=0.70 and the dashed line is fox,=0.66. mum is present in the free-energy landscape.

more stable than the uniform liquid state. The free energy per . _ )
particle of the fcc structure calculated using the Verlet-Weis The width parametew is a measure of the strength with
c(r) is also shown by the square symbols. It should be noteM"h"?h the particles are p|'ryne.d to their respective sites in their
that with the present choice of the structure factor, the den€quilibrium (or quasiequilibrium state. It is inversely pro-
sity at which the fcc structure becomes more stable than theortional to the root-mean-square displacement of the par-
liquid occurs atp=0.946 corresponding to the freezing ticles from their sites. This also defines the Lindemann ratio.

density. As was already indicated in R€f16], LaViolette and Still-

In general, for the face-centered cubic crystal, theinger[33] have observed that the root-mean-square displace-
weighted density is found to be lower than the correspond- ment of the particles in the supercooled states is approxi-
ing average density of the crystal p monotonically de- mately three times more than that found in the crystal
creases with the increase pfand it is only in the very structure at freezing. We observed in REI6] the same
high-density regiong»>0.63[32]), that a reversal of this value for this ratio corresponding to the weakly localized
trend has been observed. On the other hand, in the case of thate using the RY functional technique. In the present paper,
class of minima for loww as in the present paper,is even  with an entirely different formulation, a similar relation is
higher than the average densipy of the inhomogeneous found to be true again. This is shown in Fig. 7, where we plot
structure. This is seen for underlying amorphous latticethe parameted defined asi=1/\/«, for both the heteroge-
structures corresponding to values of the paramejgr neous (solid line and the hard-sphere glass minimum
(<0.66. For the structures corresponding to highgrval-  (dashed lingwith respect to density*. This is shown here
ues, this trend does not exist and we have based the infewith ,=0.70 for the amorphous structure. The correspond-
ences of this paper from such structures only. In Fig. 4, wéng values for the fcc hard-sphere crystal are shown as
have shown this fact by illustrating the variationfvith p
for 7,=0.66 (dashed lingand 7,=0.70 (solid line). 1.000 I

Another feature observed in this calculation is that the .
free-energy minima corresponding to highly localized den-
sity profiles termed as the hard-sphere glass, disappear fc
certain densities. This is shown in Fig. 5#t=0.98 at,
=0.70. Here, for the whole range of the density considered,
the lowera minima is distinctly present but the correspond-
ing one in the highew ranges gets smeared off at lower "<0.850 — n
densities. We observe that there is a crossover value of th .
average density, denoted ap} below which only the mini-
mum in the lower range o& is observed. This aspect is not  gg25 - -
observed 14] when the Percus-Yevick result for the direct .
correlation functiorc(r) is used. The more accurate descrip-
tion of the correlations developing at high density being in-

0975 — -

cluded in the present calculation is likely to be the reason for 9900 otse olee 0;
this observation. Furthermore, with the increasing value of ' n '
the parametery,, this value of p; keeps increasing as °

shown in Fig. 6. FIG. 6. Variation of thep? (see text with respect toy, .
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0.35 sureP, evaluated for the lowr minima (shown as circles

The derivatives, with respect to the density involved in this
computation, were obtained numerically from results for the
k free energy calculated within the MWDA approximation.
The numerical result is sensitive to the form of the direct
correlation function used. Thus, if the tail partdfr), sig-
nifying longer-range correlation in the fluid, is ignored—it

o results in a more steep increase of the corresponding pressure
with density. In the same figure we also show the corre-
sponding curve for the homogeneous liqsblid line) and

025 — —

0.5 |- —
— the fcc statgsquarep
= o a o LT
- o o | IV. DISCUSSION
0.05 ' ' We have presented here the detailed description of a cal-
0.95 1.00 1.05

culation, which identifies a heterogeneous metastable state as
a minimum in the free-energy landscape of a given random
FIG. 7. The root-mean-square displacemefin units of o) vs  structure. This state was identified in our earlier wik]
densityp*. The solid curve illustrates results for the heterogeneoususing the RY functional formulation of the density-functional
state and the dashed curve represents the “hard-sphere glass” stateeory. It was shown there that this state could be identified
(both at 7,=0.70. The squares represent the corresponding fcayith the metastable supercooled liquid states. The average
values. particle displacement in the weakly localized states con-
formed with the computer simulation predictions of LaVio-
squares. The hard-sphere glass structure shows a localizatigite and Stillinger{33]. The present paper is based on a
close to that of a crystal. These features are observed univefionperturbative approximation of the interactive part of free-
sally at anyz, value. energy functional. The significance of this paper lies in
Apart from the strength of localization, the thermody- strengthening the earlier finding by arriving at similar quali-
namic features of this weakly localized state can also beative results related to the identification of the weakly local-
computed from this study. The pressure of the hard-spherged state. This study could also be used here to compute

liquid is obtained from the expression other thermodynamical properties such as pressure in this
state[34]. The observation that the root-mean-square dis-

,BP=pﬁ—f. (12) placement is similar to what is seen in computer si_mulations

ap demonstrates that the class of minima are useful in describ-

ing the metastable state in the first stage of supercooling.
For the weakly localized state, the pressure computed in thigiere, 7, is being used as a parameter so as to generate
way is, in general, higher than that corresponding to thejifferent random structures through the scaling of the Ber-
“hard-sphere glass” state. In Fig. 8, we have shown the presnal's random structure. The increasing valueszgfat the
same 7, refer to a more dispersed random structure, as is
apparent from Eq11). When 7, is equal to 0.64 the result-
ing structure is identical to the Bernel close-packed structure.
For the crystal, the free-energy minima lie in the large
range. The RY formulation is expressed as a truncation at the
second order of the perturbation expansion in density. For
density distribution corresponding to largevalues, in gen-
eral the deviationdp(r)=p(F)—p is very large and thus
truncating the expansion at the second order is an over ap-
proximation. On the other hand, the MWDA formulation ap-
proximates the properties of the inhomogeneous structure by
that of anequivalentiquid. Since the free-energy minima for
ordered structures lie in the larger rangesagfthe corre-
sponding density of thequivalentliquid is much less than
that of the inhomogeneous structure. Thus, the fairly well-
5 ' ' known liquid state description in the lower and intermediate
0.94 0.98 . 1.02 196 density regions, like the Percus-Yevick approximation could
P be used reliably. Hence, for hard-sphere systems, this theory
FIG. 8. Pressur® [in units of (8¢°) 1] vs densityp* for the ~ has been considerably successful in determining the freezing
weakly localized state is shown as circles. The corresponding reParameters of the liquid-crystal transition. This has been the
sults for the fcc structure are shown with filled squares while theparticular advantage of the MWDA approach in studying the
same for the homogeneous liquid state is shown with the solid linestability of highly localized structures. On the other hand,

25

20

o 15

10
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due to the overlapping density profiles in the lawregion, these metastable states and obtain an estimation of the relax-
the corresponding is close to that of the average density ~ ation to these states.
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